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Abstract
Studies of the relationship between serum 25-hydroxyvitamin D (25(OH)D) and changes in

measures of adiposity have shown inconsistent results, and interaction with genetic predis-

position to obesity has rarely been examined. We examined whether 25(OH)D was associ-

ated with subsequent annual changes in body weight (ΔBW) or waist circumference (ΔWC),

and whether the associations were modified by genetic predisposition to a high BMI, WC or

waist-hip ratio adjusted for BMI (WHRBMI). The study was based on 10,898 individuals from

the Danish Inter99, the 1958 British Birth Cohort and the Northern Finland Birth Cohort
1966. We combined 42 adiposity-associated Single Nucleotide Polymorphisms (SNPs) into
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four scores indicating genetic predisposition to BMI, WC andWHRBMI, or all three traits

combined. Linear regression was used to examine the association between serum 25(OH)

D and ΔBW or ΔWC, SNP-score × 25(OH)D interactions were examined, and results from

the individual cohorts were meta-analyzed. In the meta-analyses, we found no evidence of

an association between 25(OH)D and ΔBW (-9.4 gram/y per 10 nmol/L higher 25(OH)D

[95% CI: -23.0, +4.3; P = 0.18]) or ΔWC (-0.06 mm/y per 10 nmol/L higher 25(OH)D [95%

CI: -0.17, +0.06; P = 0.33]). Furthermore, we found no statistically significant interactions

between the four SNP-scores and 25(OH)D in relation to ΔBW or ΔWC. Thus, in view of the

narrow CIs, our results suggest that an association between 25(OH)D and changes in mea-

sures of adiposity is absent or marginal. Similarly, the study provided evidence that there is

either no or very limited dependence on genetic predisposition to adiposity.

Introduction
The high prevalence of vitamin D deficiency in developed countries [1;2] is considered a seri-
ous public health concern, and a growing body of evidence suggests that the biological mech-
anisms through which vitamin D exerts its actions goes far beyond regulation of bone
mineralization and bone health [3–5]. Currently, vitamin D is suspected to play a role in
the pathophysiology of several chronic diseases such as cardiovascular disease [6], hyperten-
sion [7], type 2 diabetes [8] and several forms of cancer [9]. Furthermore, cross-sectional
studies have consistently shown an association between low serum 25-hydroxyvitamin D
(25(OH)D) and obesity [10–13]. Moreover, vitamin D receptors are expressed in almost
all tissues and organs [14]. Yet, the nature of the cross-sectional association between low
vitamin D status and obesity remains unclear. Prospective studies examining the association
between serum 25(OH)D and subsequent body weight (BW) change have shown inconsistent
results [15–17]. However, results from a bi-directional Mendelian randomization study,
based on 42,024 participants of European descent, suggested a causal relation for a higher
BMI on reduced serum 25(OH)D status, while a general effect of serum 25(OH)D on BMI
was likely to be absent or minimal [18]. Likewise, a recently published meta-analysis of 12
randomized trials, failed to show a statistically significant effect of oral vitamin D supple-
mentation on BW change [19]. Nevertheless, a recently published longitudinal study of
796 children in the Brazilian Amazon observed a more pronounced association between
FTO rs9939609 genotype and BW gain among children with a low vitamin D status [20].
Hence, an obesity preventive impact of vitamin D may be present among specific genetic
subgroups.

During the last decade, genome-wide association studies (GWAS) have identified several
common genetic variants associated with BMI, waist circumference (WC) or waist-hip ratio
adjusted for BMI (WHRBMI) [21–33], and studies have suggested that different environmental
factors may attenuate or enhance the impact that these genetic variants have on adiposity
[34–36].

Given this background, the aim of our study was to examine whether serum 25(OH)D con-
centrations (nmol/L) were associated with subsequent annual changes in body weight (ΔBW;
gram/y) or waist circumference (ΔWC; mm/y), and whether these associations were modified
by genetic predisposition to a high BMI, WC or WHRBMI.
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Materials and Methods

Study population
Our study was based on participants of white North-European descent from the Danish
Inter99 study, the 1958 British birth cohort (1958BC), and the Northern Finland Birth Cohort
1966 (NFBC1966).

Inter99: A multifactorial lifestyle intervention study (CT00289237, ClinicalTrials.gov), focus-
ing on prevention of ischemic heart disease through healthy lifestyle. In 1999, an age- and sex-
stratified random sample of 13,016 men and women born in 1939–40, 1944–45, 1949–50, 1954–
55, 1959–60, 1964–65, 1969–70, living in 11 municipalities in the former Copenhagen County
was drawn from the Civil Registration System and invited to a health examination. Of the 13,016
participants a total of 12,934 were eligible for invitation, and of these 6,784 participated [37;38].
In 2004, all participants from the baseline examination were re-invited for a follow-up study
where the baseline examination programme was repeated [39]. Information on serum 25(OH)D
concentrations was achieved from 6,497 participants. Of these, we had information on genetics,
baseline and follow-up anthropometric measures as well as information on potential confound-
ers on 4,437 individuals. For the present study, we excluded participants with non-Nordic
descent (n = 158), and participants with prevalent cancer, cardiovascular disease or self-reported
diabetes (n = 481) at baseline, ending up with 3,798 participants (3,295 in the analysis of ΔWC).

1958BC: In brief, participants were followed from birth to age 55 years. The original cohort
consisted of all births (n = 17,638) born in one week of March 1958 in England, Scotland or
Wales. At age 45 years, 11,971 participants were invited to attend a biomedical assessment and
9,377 took part [40]. For the present study we had information on serum 25(OH)D concentra-
tions at age 45 years, BW at age 45 and 50 years (WC was only available at age 45y for the
1958BC), genetic information as well as information on potential baseline confounders on
4,276 individuals. Moreover, participants with self-reported diabetes at baseline (n = 209) were
excluded from the analyses. Thus, we had a total of 4,067 participants, all of Caucasian descent.

NFBC1966: The cohort comprises a total of 12,058 live births to mothers living in the north-
ern provinces of Finland, who were invited to participate if they were expected to deliver during
1966 [41]. Baseline information in the current study originates from the follow-up in 1998 (31
years of age), and information on follow-up of anthropometry was from 2013 (46 years of age).
We had information on serum 25(OH)D concentrations at baseline, repeated measures of
anthropometry, genetic information, as well as information on potential confounders on a
total of 3,193 individuals. For the present study, we further excluded participants with preva-
lent cancer, cardiovascular disease or self-reported diabetes (n = 160). Thus, ending up with
3,033 individuals (2,916 in analyses of ΔWC).

All protocols in the three studies were in accordance with the Helsinki Declaration, were
approved by the local Ethical Committees, and all participants provided written informed con-
sent. The Inter99 study was approved by the Copenhagen County Ethical Committee (KA
98155) and registered in the Clinical Trials.gov (NCT00289237). The Northern Finland 1966
Birth Cohort was approved by the Ethical Committee of Oulu University Faculty of Medicine.
For the 1958 British Birth Cohort, ethics approval for the study was obtained from the South-
East Multi-Centre Research Ethics Committee (Ref: 01/1/44) and the Joint UCL/UCLH Com-
mittees on the Ethics of Human Research (Committee A: Ref: 08/H0714/40).

25-hydroxyvitamin D
In brief, Inter99 blood measures were drawn at baseline after an overnight fast. Serum samples
from the participants were stored at -20°C until 2010. Analysis of 25(OH)D was performed by
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high performance liquid chromatography [42]. In 1958BC, fasting serum 25(OH)D concentra-
tions were measured using an automated Immunodiagnostic Systems Limited OCTEIA assay
with a Dade-Behring BEP2000 analyser and standardised according to the mean of Vitamin D
Quality Assessment Scheme (DEQAS) [43]. In NFBC1966, total serum 25(OH)D was mea-
sured with high-performance liquid chromatography-tandem mass spectrometry [18]. In all
cohorts, 25(OH)D was included in the analyses as a continuous variable (nmol/L) and as a cat-
egorical variable (insufficient:<50nmol/L and sufficient:�50nmol/L) [44]. Furthermore, sea-
son of blood sampling was included in analyses as a categorical variable (spring: Mar-May,
summer: Jun-Aug, fall: Sep-Nov and winter: Dec-Feb).

SNP selection and genotyping. We had information on a total of 42 Single Nucleotide
Polymorphism (SNPs) (genotyped, imputed or proxy-SNPs) shown to be consistently associated
with BMI, WC orWHRBMI at genome-wide significance levels in GWAS [21–33] (S1 Table).

The SNPs were successfully genotyped in Inter99 using either the KASPar SNP genotyping
method, or through human cardio-metabo bead chip array [45], and had a genotyping call rate
>95%, an error rate�0.7% and showed no significant deviation from Hardy-Weinberg equi-
librium (HWE) (P>0.05).

In 1958BC, genome-wide data was obtained through two sub-studies. The first sub-study
included 3,000 DNA samples randomly selected as part of the Welcome Trust Case Control
Consortium (WTCCC2) and genotyped on the Affymetrix 6.0 platform. The second sub-study
was a Type 1 diabetes case–control study (T1DGC) which used 2,500 DNA samples genotyped
using the Illumina Infinium 550 K chip through the JDRF/WT Diabetes and Inflammation
Laboratory (DIL) [46]. All SNPs genotyped had a call rate above>96% and showed no signifi-
cant deviation from HWE (P> 0.05) except rs29941 (P = 0.001).

In NFBC1966, genomic DNA was extracted from whole blood using standard methods.
Genotyping was performed using the Illumina Infinium 370cnvDuo array prepared for geno-
typing by the Broad Institute Biological Sample Repository (BSP) [46]. All genotyped SNPs
had a call rate>99% and showed no significant deviation from HWE (P>0.05).

Genetic predisposition scores. For each individual, the 42 SNPs were coded 0, 1 or 2
according to the number of adiposity associated risk alleles. Four different SNP-scores were
then calculated as indicators of genetic predisposition: scores based on summing risk alleles of
all 42 SNPs (Composite-score), 26 BMI associated SNPs (BMI-score), 5 WC associated SNPs
(WC-score) and 14 WHRBMI associated SNPs (WHR-score), with higher scores indicating
higher genetic predisposition to these specific traits, a method we have previously used to study
gene × diet interaction in relation to changes in measures of adiposity [47–49].

Anthropometric measures
Height and BWwere measured at baseline and follow-up in all three cohorts. Weight was mea-
sured with the participants wearing indoor light clothing without shoes. WC was measured hor-
izontally midway between the lower rib margin and the iliac crest in Inter99 andNFBC1966.
Follow-up measures onWC were not available in 1958BC, and therefore analyses of ΔWCwere
not performed in this cohort. On the basis of these measures, we calculated changes in BW and
WC in each cohort as the difference between baseline and follow-up. From this we calculated
ΔBW (g/y) and ΔWC (mm/y) by dividing the derived differences (i.e. follow-up—baseline val-
ues) with the individual follow-up time in years.

Covariates
Information on the participants’ baseline age and gender, and the women’s report on whether
they had entered menopause were included as covariates. All participants reported information
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on baseline smoking status, and this information was included as a categorical variable: never
smoked, former/occasional or current smoker. Likewise, all three cohorts had information
about consumption of alcohol at baseline and this was included in the analyses as units of etha-
nol (1 unit = 1.5 cl or 12 g).

In Inter99, information on baseline physical activity was based on two questions on com-
muting physical activity and leisure time physical activity. From these two questions, overall
physical activity was calculated by summing response on commuting physical activity (con-
verted into minutes per week using a five-day working week) and a leisure time physical activ-
ity variable (converted into minutes per week) [39]. From this variable, overall physical activity
was grouped into four categories<2 h/week, 2–3.9 h/week, 4–6.9 h/week and�7 h/week. In
1958BC and NFBC1966, metabolic equivalent of task (MET) hours per week was calculated
from reported frequencies and usual durations for several kind of activities [50;51], and
included as a categorical variable (quartiles).

In Inter99 and NFBC1966, education was assessed at baseline with questions about years of
regular schooling, and for the present study the variable was classified as having a school edu-
cation above the primary level or not. In 1958BC, educational level was classified into five cate-
gories (none, some qualification, O-level, A-level or degree).

Finally, in Inter99 we calculated participants´ total daily energy intake based on food fre-
quency questionnaires. Total energy intake was included in supplemental analyses as a contin-
uous variable (MJ/day).

Statistical analyses
Linear regression was used to examine the association between serum 25(OH)D concentrations
and subsequent ΔBW and ΔWC, with adjustments for height, baseline measure of outcome,
age, sex, smoking status, education level, physical activity, season of 25(OH)D blood sample,
alcohol consumption and menopausal status for women. All continuous variables were evalu-
ated by model control (investigating linearity of effects on outcome(s), consistency with a
normal distribution and variance homogeneity). Furthermore, we analyzed the association
between SNP-scores and ΔBW and ΔWC among all participants, as well as 25(OH)D insuffi-
cient and sufficient participants separately.

To examine interaction between the four genetic predisposition scores and serum 25(OH)D
concentration in relation to ΔBW or ΔWC, we correspondingly added the SNP-score variables
as well as the interaction terms (SNP-score × 25(OH)D) to the dietary main effects-model. The
calculated SNP-score × vitamin D interaction estimates can be conceptualized as their com-
bined influence beyond the individual main associations. Furthermore, as Lourenco et al.
found that FTO (rs9939609) interacts with 25(OH)D in relation to weight gain among chil-
dren, we further investigated interaction between this particular variant and 25(OH)D in rela-
tion to ΔBW and ΔWC in our adult population [20].

After performing analyses in the individual cohorts, the results were combined through ran-
dom effects meta-analyses, allowing for between-study heterogeneity. P-values� 0.05 were
regarded as statistically significant. Analyses were performed using the statistical software
package Stata 12 (StataCorp LP, College Station, Texas, USA; www.stata.com).

Supplementary analyses
For documentary and exploratory purposes, we performed the analysis of interactions between
all the individual SNPs and serum 25(OH)D concentration in relation to ΔBW and ΔWC, with
Bonferroni adjustment for multiple testing.
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In Inter99, dietary information was available from food frequency questionnaires. Thus, to
further limit the possibility of confounding by energy intake, we performed supplementary
analyses adjusted for total energy intake. Furthermore, Inter99 is a multifactorial lifestyle inter-
vention study. Hence, we further adjusted the Inter99 analyses for baseline intervention status.
Moreover, to assess associations that were independent of ΔBW, the analysis with ΔWC as out-
come was additionally performed with adjustment for concurrent ΔBW. This measure was also
included instead of waist-hip ratio adjusted for BMI, as follow-up information on hip circum-
ference was not available in all cohorts. The baseline correlation between waist-hip ratio
adjusted for BMI and WC adjusted for BMI was 0.68 in Inter99.

Results
For the current study, we had information on 10,898 individuals; 3,798 of whom were from
Inter99, 4,067 from 1958BC, and 3,033 from the NFBC1966. Information on 25(OH)D, anthro-
pometry, SNP-scores and covariates are shown in Table 1. The highest baseline median 25
(OH)D status was seen for the 1958BC participants (57 nmol/L; 5th–95th percentiles: 23–104
nmol/L) and the lowest among the Inter99 participants (49 nmol/L; 5th–95th percentiles: 16–
102 nmol/L). Likewise, 1958BC had the lowest proportion of participants with insufficient 25
(OH)D status (39.1%), while Inter99 had the highest (50.2%). Baseline median BW was lower
in NFBC1966 (69.9 kg; 5th–95th percentiles: 52.0–96.4) than Inter99 (76.0 kg; 5th–95th percen-
tiles: 55.0–104.1) and 1958BC (77.2 kg; 5th–95th percentiles: 55.4–107.1) which reflected the
younger baseline age of NFBC1966 participants. A similar pattern was seen for baseline WC.
No substantial differences between the cohorts were seen for ΔBW or ΔWC.

Information on the 42 included SNPs along with information on which adiposity traits they
have been a priori associated with can be found in S1 Table.

Vitamin D status and subsequent change in anthropometry
The meta-analysis of the association estimates between serum concentration of 25(OH)D and
ΔBW and ΔWC are shown in Fig 1. The analysis of the NFBC1966 showed that 25(OH)D at
baseline was associated with ΔBW (-19.85 gram/y; 95% CI: -36.65, -3.05; P = 0.02 per 10 nmol/
L increase in 25(OH)D). However, this association was neither replicated in the other popula-
tions studied, nor in the meta-analysis of the three cohorts (-9.38 gram/y; 95% CI: -23.03,
+4.27; P = 0.18 per 10 nmol/L higher 25(OH)D).

Similarly, the analyses with ΔWC as the outcome, did not reject the null hypothesis and no
detectable associations were found in Inter99, NFBC1966 or in the meta-analysis including
both cohorts (-0.06 mm/y (95% CI: -0.17, +0.06; P = 0.33) per 10 nmol/L higher 25(OH)D).

SNP-scores and changes in anthropometry stratified by vitamin D status
Table 2 shows the association between the four SNP-scores and ΔBW among all participants,
and stratified on baseline 25(OH)D status (insufficient: <50 nmol/L and sufficient:�50 nmol/
L). No evidence for an association was observed between the BMI-score, the WC-score or the
Composite-score and ΔBW. Likewise, no significant difference was observed between 25(OH)
D insufficient and sufficient participants. In the meta-analysis of all three cohorts each addi-
tional risk allele from the WHR-score was associated with a ΔBW of -9.5 gram/y (-16.1, -2.8;
P = 0.004). The same pattern was found for both 25(OH)D sufficient and insufficient partici-
pants, with no significant differences between the groups (P for interaction = 0.873).

In analyses of all participants, we found no association between the four SNP-scores and
ΔWC. Some indication for differences in the association between the WC-score and ΔWC was
observed for 25(OH)D insufficient and sufficient participants in both Inter99 and NFBC1966.
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Table 1. Information on 25-hydroxyvitamin D, anthropometrics, genetic predisposition scores and covariates in Inter99, 1958BC andNFBC1966.
Reported as median (5–95 percentiles) unless otherwise stated.

Inter99 1958BC NFBC1966

N 3,798 4,067 3,033

Follow-up time (years) 5.4 (5, 5.7) 5.0 (5, 5) 15.4 (14.6, 16.5)

Basic variables

25(OH)D (nmol/L) 49 (16, 102) 57 (23, 104) 50 (29, 76)

25(OH)D (% insufficient)1 50.2 39.1 49.6

Gender, %women 51.1 46.4 56.5

Baseline age (years) 45.1 (34.7, 59.8) 45 (45, 45) 31.1 (30.5, 31.7)

Height (cm) 2 172.0 (158.0, 187.5) 170.1 (155.2, 185,0) 170.3 (157,0, 186,0)

BW 3

Baseline (kg) 76.0 (55.0, 104.1) 77.2 (55.4, 107.1) 69.9 (52.0, 96.4)

Follow-up (kg) 76.7 (56.0, 105.1) 77.6 (54.4, 107.9) 76.5 (55.8, 107.7)

ΔBW (kg/y) 0.2 (-1.4, 1.8) 0.1 (-1.8, 2) 0.4 (-0.3, 1.4)

WC 4

Baseline (cm) 85.0 (67.0, 107.0) - 82.0 (66.5, 104.0)

Follow-up (cm) 88.0 (69.0, 110.0) - 90.0 (72.0, 115.0)

ΔWC (cm/y) 0.5 (-1.3, 2.4) - 0.5 (-0.3, 1.5)

SNP-based variables 5

BMI-score 24 (19, 30) 24 (19, 30) 24 (19, 30)

WC-score 3 (1, 5) 3 (1, 5) 3 (1, 5)

WHR-score 14 (10, 18) 14 (10, 18) 15 (11, 19)

Composite-score 39 (32, 46) 39 (32, 46) 40 (34, 47)

Adjustment variables

Smoking, % Never smokers 40.0 22.2 27.7

Education, % � Primary school 26.2 21.2 56.7

Physical activity, % most sedentary group 11.0 23.0 22.8

Menopausal status, % postmenopausal 27.9 6.7 0.0

Alcohol (Units/day) 0.8 (0.0, 4.4) 0.7 (0.7, 2.6) 0.3 (0.0, 2.6)

Season of 25(OH)D blood sample %

Mar-May 30.3 19.2 21.5

Jun-Aug 23.0 23.3 38.3

Sep-Nov 26.1 40.1 29.2

Dec-Feb 20.7 17.5 11.0

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; BW, body weight; WC, waist circumference; ΔBW, annual body weight change; ΔWC, annual waist

circumference change; HRT, hormone replacement therapy.
1 25(OH)D status: Insufficient, 25(OH)D <50nmol/L.
2 Gender-specific medians (5–95 percentiles). For male/woman in Inter99 baseline height (179/166 cm [168/156, 191/177]). For male/woman in 1958BC

baseline height (176/163 cm [166/153, 188/173]). For male/woman in 1958BC baseline height (178/165 cm [168/155, 189/175])
3 Gender-specific medians (5–95 percentiles). For males/woman in Inter99 baseline BW (84/68 kg [66/53, 108/96]), follow-up BW (85/69 kg [66/53, 108/

96]), ΔBW (0.2/0.2 kg [-1.3/-1.5, 1.8/1.7]). For males/woman in 1958BC baseline BW (85/67 kg [65/52, 110/99]), follow-up BW (86/67 kg [66/52, 114/97]),

ΔBW (0.1/-0.0 kg [-1.6/-2.1, 2.1/2.0]). For males/woman in NFBC1966 baseline BW (79/63 kg [63/51, 101/89]), follow-up BW (85/69 kg [67/54, 113/100]),

ΔBW (0.4/0.4 kg [-0.3/-0.3, 1.3/1.4]).
4 Inter99: n = 3,295 on ΔWC. NFBC1966: n = 2,916 on ΔWC. Gender-specific medians (5–95 percentiles). For males/woman in Inter99 baseline WC (91/

77 cm [77/64, 110/101]), Follow-up WC (94/80 cm [79/67, 112/104]), ΔWC (0.4/0.7 cm/y [-1.3/-1.3, 2.2/2.5]). For males in NFBC1966 baseline WC (88/76

cm [75/65, 106/101]), Follow-up WC (96/86 cm [81/70, 118/112]), ΔWC (0.5/0.5 cm/y [-0.2/-0.3, 1.4/1.6]).
5 Sum of BMI, WC or WHRBMI associated risk-alleles. In Inter99: n = 2,605 on BMI-score, n = 3,272 on WC-score, n = 3,058 on WHR-score, n = 2,162

on Composite-score. In 1958BC: n = 3,900 on BMI-score, n = 4,067 on WC-score, n = 4,066 on WHR-score, n = 3,899 on Composite-score. In

NFBC1966: n = 3,005 on BMI-score, n = 3,030 on WC-score, n = 3,018 on WHR-score, n = 2,990 on Composite-score.

doi:10.1371/journal.pone.0153611.t001
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However, the direction of the observed interactions were opposite in the two cohorts. In
Inter99, we found an association between the WC-score and a higher ΔWC among 25(OH)D
sufficient, while no association was observed among 25(OH)D insufficient participants. In con-
trast, results from NFBC1966 showed that the WC-score was associated with a lower ΔWC
among 25(OH)D insufficient participants, while no association was observed among 25(OH)D
sufficient individuals. Thus, in the meta-analysis no difference was observed between 25(OH)
D insufficient and sufficient participants (P for interaction = 0.399) (Table 3).

Interaction between genetic predisposition scores and serum
25-hydroxyvitamin D
No significant interactions were observed between the four SNP-scores and 25(OH)D in rela-
tion to ΔBW in the individual cohorts or in the meta-analyses (Fig 2).

Fig 1. Annual change in body weight (g/y) and waist circumference (mm/y) per 10 nmol/L higher 25-hydroxyvitamin D status. Estimates were
calculated in Inter99, 1958BC and NFBC1966 using linear regression and the results were subsequently meta-analyzed using a random effects approach.
Adjusted for baseline outcome, height, gender, age, smoking status, alcohol consumption, physical activity, education, menopausal status for women and
season of blood draw.

doi:10.1371/journal.pone.0153611.g001
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In Inter99, the WC-score appeared to modify the association between 25(OH)D and ΔWC,
while in the NFBC1966 cohort no interaction was observed, and the meta-analyzed product
term was not statistically significant (Fig 3).

Interaction between FTO (rs9939609) and serum 25-hydroxyvitamin D
The direction of the interaction estimates was fairly consistent for the three cohorts, indicating
that the FTO risk allele was associated with a slightly lower gain in BW andWC among partici-
pants with higher serum 25(OH)D, consistent with the results among children published by
Lourenco et al. [20]. However, the results from meta-analyses were not statistically significant
(Fig 4).

Supplementary analyses
We also examined interaction between the 42 individual SNPs and 25(OH)D in relation to
ΔBW (S2 Table) and ΔWC (S3 Table). However, there was no evidence for interaction between
any of the 42 SNPs and 25(OH)D after Bonferroni adjustment for multiple testing.

Further adjustment for total energy intake and baseline intervention status in the Inter99
cohort had only negligible influence on the observed main effect of 25(OH)D on change in

Table 2. Association between SNP-scores and annual weight change (gram/y) stratified by baseline vitamin D status.

All Baseline vitamin D status

N β (95% CI)1 Insufficient2 β (95% CI) Sufficient β (95% CI) P-interaction

Inter99

BMI-score 2,605 1.4 (-9.8, 12.5) 3.0 (-13.4, 19.4) -1.3 (-16.4, 13.8) 0.671

WC-score 3,272 3.3 (-20.2, 26.9) -15.5 (-50.7, 19.6) 25.3 (-6.1, 56.7) 0.061

WHR-score 3,058 -13.3 (-27.6, 1.0) -9.8 (-31.5, 11.9) -14.7 (-33.4, 4.0) 0.796

Composite-score 2,162 -6.2 (-15.9, 3.4) -2.8 (-17.0, 11.3) -8.9 (-22.2, 4.4) 0.657

1958BC
BMI-score 3,900 7.5 (-6.2, 21.3) 4.6 (-19.6, 28.8) 10.6 (-5.9, 27.1) 0.859

WC-score 4,067 15.2 (-16.0, 46.4) 27.5 (-25.9, 80.8) 9.3 (-28.9, 47.4) 0.426

WHR-score 4,066 -13.8 (-31.8, 4.2) -19.0 (-50.9, 13.0) -11.4 (-33.0, 10.2) 0.657

Composite-score 3,899 -1.8 (-12.4, 8.7) -3.8 (-22.3, 14.8) 0.2 (-12.5, 12.9) 0.848

NFBC1966
BMI-score 3,005 3.5 (-2.5, 9.5) 4.3 (-4.5, 13.3) 3.1 (-5.1, 11.2) 0.819

WC-score 3,030 10.6 (-3.6, 24.8) 18.6 (-2.6, 39.8) 2.2 (-16.8, 21.2) 0.232

WHR-score 3,018 -7.2 (-15.5, 1.0) -8.0 (-20.3, 4.4) -6.9 (-17.9, 4.1) 0.880

Composite-score 2,990 -0.1 (-4.8, 4.6) 1.0 (-6.1, 7.9) -1.1 (-7.4, 5.2) 0.692

Meta-analyses 3

BMI-score 9,510 3.6 (-1.3, 8.6) 4.1 (-3.3, 11.5) 3.4 (-3.1, 10.0) 0.752

WC-score 10,369 9.6 (-1.8, 20.9) 11.3 (-5.9, 28.5) 8.5 (-6.5, 23.5) 0.741

WHR-score 10,142 -9.5 (-16.1, -2.8) -9.5 (-19.7, 0.7) -9.3 (-18.0, -0.7) 0.873

Composite-score 9,051 -1.4 (-5.3, 2.6) -0.2 (-6.1, 5.7) -2.1 (-7.3, 3.1) 0.657

Abbreviations: SNP-score (BMI, WC, WHR or Composite), sum of BMI, waist circumference or waist-hip ratio adjusted for BMI associated risk-alleles.
1 Adjusted for baseline body weight, height, gender, age, smoking status, alcohol consumption, physical activity, education, menopausal status for women

and season of blood draw.
2 25-hydroxyvitamin D <50nmol/L.
3 Estimates were calculated in Inter99, 1958BC and NFBC1966 using linear regression and the results were subsequently meta-analyzed using a random

effects approach.

doi:10.1371/journal.pone.0153611.t002
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anthropometry (S4 Table) or on the SNP-score × 25(OH)D interaction estimates (S5 Table).
Likewise, further adjusting the analyses of ΔWC for concurrent ΔBW in Inter99 and
NFBC1966 had no substantial influence on the observed associations (S1 and S2 Figs).

Discussion
In analyses of up to 10,898 individuals from three prospective European cohorts with longitu-
dinal follow-up, we found no significant associations between 25(OH)D and ΔBW or ΔWC,
and the corresponding confidence intervals were quite narrow. Likewise, our analyses did not
suggest that there are associations between 25(OH)D and ΔBW or ΔWC that are modified by
scores of genetic variants related to BMI, WC or WHRBMI.

Although no evidence of association was observed in these meta-analyzed results, some dif-
ferences were seen in the individual cohorts. For example, there was an association between
higher 25(OH)D and subsequent lower BW gain in the Finnish NFBC1966, but no association
was observed in the Danish Inter99 and the British 1958BC. Another heterogeneity was
observed in the results for interaction between the WC-score and 25(OH)D in relation to
ΔWC. In fact, while the analysis from the Inter99 indicated that 25(OH)D was associated with
a greater increase in WC with higher genetic predisposition score, the opposite trend was
observed in the NFBC1966.

While some prospective cohort studies have indicated a link between higher serum 25(OH)D
and less BW gain or incident obesity [15;16], other studies have suggested that such a relation-
ship is not present [17;18]. Furthermore, the previously mentioned meta-analysis of 12 random-
ized controlled trials found no evidence for a protective effect of vitamin D supplementation on

Table 3. Association between SNP-scores and annual change in waist circumference (mm/y) stratified by baseline vitamin D status.

All Baseline vitamin D status

N β (95% CI) 1 Insufficient 2 β (95% CI) Sufficient β (95% CI) P-interaction

Inter99

BMI-score 2,243 0.01 (-0.13, 0.16) 0.02 (-0.18, 0.23) -0.05 (-0.24, 0.15) 0.603

WC-score 2,830 0.10 (-0.20, 0.39) -0.30 (-0.73, 0.13) 0.45 (0.05, 0.86) 0.008

WHR-score 2,652 -0.05 (-0.23, 0.12) -0.02 (-0.28, 0.23) -0.11 (-0.35, 0.13) 0.706

Composite-score 1,863 -0.00 (-0.13, 0.12) 0.04 (-0.14, 0.21) -0.07 (-0.24, 0.10) 0.472

NFBC1966
BMI-score 2,889 0.05 (-0.01, 0.11) 0.08 (-0.01, 0.17) 0.02 (-0.06, 0.11) 0.465

WC-score 2,913 0.14 (-0.01, 0.29) 0.30 (0.08, 0.52) -0.04 (-0.24, 0.16) 0.023

WHR-score 2,902 -0.06 (-0.15, 0.03) 0.06 (-0.19, 0.07) -0.06 (-0.18, 0.05) 0.948

Composite-score 2,875 0.01 (-0.04, 0.06) 0.04 (-0.03, 0.11) -0.01 (-0.08, 0.05) 0.279

Meta-analyses 3

BMI-score 5,132 0.04 (-0.01, 0.10) 0.07 (-0.02, 0.15) 0.01 (-0.07, 0.09) 0.326

WC-score 5,743 0.13 (-0.00, 0.26) 0.18 (-0.02, 0.37) 0.06 (-0.12, 0.24) 0.399

WHR-score 5,554 -0.06 (-0.14, 0.02) -0.05 (-0.17, 0.06) -0.07 (-0.18, 0.03) 0.974

Composite-score 4,738 0.01 (-0.03, 0.06) 0.04 (-0.03, 0.11) -0.02 (-0.08, 0.04) 0.358

Abbreviations: SNP-score (BMI, WC, WHR or Composite), sum of BMI, waist circumference or waist-hip ratio adjusted for BMI associated risk-alleles.
1 Adjusted for baseline waist circumference, height, gender, age, smoking status, alcohol consumption, physical activity, education, menopausal status for

women and season of blood draw.
2 25-hydroxyvitamin D <50nmol/L.
3 Estimates were calculated in Inter99 and NFBC1966 using linear regression and the results were subsequently meta-analyzed using a random effects

approach.

doi:10.1371/journal.pone.0153611.t003
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change in BMI [19]. Thus, our study builds on evidence that any causal relationship between 25
(OH)D and BW gain is either not present or small. Previous studies investigating the association
between 25(OH)D and subsequent change in adiposity measures have generally not taken into
account possible interaction with genetic predisposition to obesity. However, as mentioned pre-
viously, Lourenco et al. (2014) found an interaction between FTO (rs9939609) and 25(OH)D in
relation to subsequent BW gain in childhood [20]. We were unable to replicate an interaction
between FTO and 25(OH)D in relation to ΔBW in our adult population (P = 0.19) suggesting
that this might be an age-specific interaction. However, in our study the direction of the interac-
tion estimates, although not statistically significant, were consistent across all cohorts. Therefore,
vitamin D status may be associated with a lower BW orWC gain per additional FTO risk allele,
which corresponds to the direction of the interaction observed by Lourenco et al. (20)

The main strengths of our study are the use of data from three large cohorts with informa-
tion on 25(OH)D, with a wide-range of serum concentrations and an equal distribution of 25
(OH)D sufficient and insufficient participants, repeated measures of anthropometry as well as
information on several potential confounders. Likewise, we had information on 42 SNPs found
to be consistently associated with different adiposity measures in GWAS, allowing us to

Fig 2. Interaction between genetic predisposition scores and 25-hydroxyvitamin D in relation to subsequent change in body weight. Abbreviations:
BMI score, sum of body mass index associated risk-alleles; WC score, sum of waist circumference associated risk-alleles; WHR score, sum of waist-hip ratio
adjusted for BMI associated risk-alleles; Composite score, sum of SNP associated to all three phenotypes. Results presented as annual weight change (g/y)
effect-modification for each additional risk-allele per 10 nmol/L higher 25-hydroxyvitamin D. The study-specific SNP-score × 25-hydroxyvitamin D interactions
were calculated using linear regression and corresponding meta-analysis results were derived using a random effects approach. The results were adjusted
for baseline measure of body weight, height, gender, age, smoking status, alcohol consumption, physical activity, education, menopausal status for women
and season of blood draw.

doi:10.1371/journal.pone.0153611.g002
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calculate genetic predisposition scores. Furthermore, we conducted prospective analyses of
changes in anthropometry limiting the influence of reverse causality.

However, our study has some limitations. We relied one a single baseline measure of 25
(OH)D, but repeated exposure measurements during the follow-up period would have
strengthened our study. Estimated 25(OH)D concentrations from commercially available
assays are related to some uncertainty. Moreover, we used different methods to measure 25
(OH)D in the three cohorts. Although this may lead to slightly different concentration esti-
mates in the three cohorts, it is unlikely to have a substantial influence on the overall results, as
the most important factor in this context is the methods ability to rank individuals correctly. In
the present study, we used changes in BW andWC as outcomes which are not the most sensi-
tive measures of adiposity, especially considering the small annual changes observed in the
present study, and this may partly explain the limited findings.

Furthermore, as mentioned, some dissimilarity in the results was observed between the
cohorts. While this is likely due to chance findings, we are unable to rule out influence of design
differences between the three cohorts. In this regard, both Inter99 and 1958BC had an average

Fig 3. Interaction between genetic predisposition scores and 25-hydroxyvitamin D in relation to subsequent change in waist circumference.
Abbreviations: BMI score, sum of body mass index associated risk-alleles; WC score, sum of waist circumference associated risk-alleles; WHR score, sum of
waist-hip ratio adjusted for BMI associated risk-alleles; Composite score, sum of SNP associated to all three phenotypes. Results presented as annual
change in waist circumference (mm/y) effect-modification for each additional risk-allele per 10 nmol/L higher 25-hydroxyvitamin D. The study-specific SNP-
score × 25-hydroxyvitamin D interactions were calculated using linear regression and corresponding meta-analysis results were derived using a random
effects approach. The results were adjusted for baseline measure of waist circumference, height, gender, age, smoking status, alcohol consumption,
physical activity, education, menopausal status for women and season of blood draw.

doi:10.1371/journal.pone.0153611.g003
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follow-up time of roughly 5 years, while the follow-up time in NFBC1966 was approximately
15 years. Another important consideration is the different baseline ages in the three cohorts.
While the baseline median age for Inter99 and 1958BC was approximately 45 years, NFBC1966
participants were approximately 31 years old, and we cannot rule out the possibility that the
influence of vitamin D on the adiposity measures varies with age. Differences due to geographic
location of the included cohorts or country-specific gene pools could affect the results. Further-
more, although this study included information on up to 10,898 participants, it is possible that
we overlooked some associations because of a lack of statistical power. However, the generally
quite narrow CIs suggest that it is less likely that we overlooked any noteworthy associations.
Thus, the public health relevance of vitamin D for adiposity changes is questionable. Though

Fig 4. Interaction between FTO (rs9939609) and 25-hydroxyvitamin D in relation to subsequent change in body weight and waist circumference
Results presented as annual change in body weight (g/y) and waist circumference (mm/y) effect-modification for each additional A-allele per 10 nmol/L
higher 25-hydroxyvitamin D. The study-specific FTO × 25-hydroxyvitamin D interactions were calculated using linear regression and corresponding meta-
analysis results were derived using a random effects approach. The results were adjusted for baseline measure of exposure, height, gender, age, smoking
status, alcohol consumption, physical activity, education, menopausal status for women and season of blood draw.

doi:10.1371/journal.pone.0153611.g004
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we had information on several possible confounders, unknown or residual confounding may still
be operating. In this context, both measures of physical activity and dietary intake are known to
be subject to considerable imprecision [52]. Furthermore, it could have been relevant to adjust
for vitamin supplement use, but we did not have information available in all cohorts. The four
SNP-scores were based on information frommany of the established BMI, WC andWHRBMI

associated variants identified to date, however, these variants only explain a small amount of the
total variation in obesity measures [53]. Thus, one could argue that it would be more appropriate
to investigate interaction between phenotype at baseline (i.e. BW orWC) and 25(OH)D in rela-
tion to the subsequent change in the same measure. However, while this method is likely to cap-
ture a larger portion of the total genetic predisposition to obesity, it is also clear that a somewhat
different question would be answered, because this method would not provide a separation of
genetically and environmentally caused obesity. Likewise, the use of genetic predisposition scores
based on genetic variants associated with current status of adiposity in cross-sectional GWAS
may not be applicable when analyzing prospective change in BW andWC. In this regard, we
have previously shown that although these genetic risk scores are strongly associated with a
higher cross-sectional status of BW andWC, they are not generally associated with ΔBW or
ΔWC [47]. This lack of association is consistent with the findings in the present study, though
we did find an inverse association betweenWHRBMI SNPs and ΔBW. Similarly, a recently pub-
lished study found evidence for a contradictory inverse association between a high number of
BMI-associated risk-alleles and less weight gain after middle-age, while a more expected increase
in weight gain was observed in younger age. These and our results may indicate a possible dis-
agreement between genetic susceptibility for obesity in different age groups across lifespan [54].
Yet, a general lack of a main effect for the genetic risk scores on changes in anthropometry does
not preclude a possible interaction effect with for example 25(OH)D.

In addition, the estimates from the SNP-score × 25(OH)D interaction analyses can be
described as the average interaction effect per additional adiposity associated risk allele. Thus,
for the method to be suitable for capturing interaction effects of multiple SNPs, there needs to
be a general consistency between the direction of cross-sectional adiposity-related main effect
of the included SNPs and the direction of the SNP × 25(OH)D interaction effect in relation to
subsequent change in adiposity. This assumption is not necessarily correct, and the limited
findings with respect to the interaction analysis could in theory be explained by this.

The cohort samples available for analysis in this study may not be representative of the gen-
eral population as some participants were excluded due to missing information on 25(OH)D,
anthropometric outcomes, SNPs and/or covariates. However, as it is the effect of 25(OH)D on
anthropometric changes which should be representative, and not necessarily the examined
populations in general, we see no obvious reason why the results should not be the same in the
respective background populations. Finally, our analyses were conducted in three cohorts of
white-European descent and results may not generalize to other ethnic groups.

In conclusion, using data from three large prospective cohorts of North-Europeans, our
study shows no association between 25(OH)D and subsequent change in BW orWC. Thus,
due to the narrow CIs, our results suggest that any association between 25(OH)D and changes
in measures of adiposity is absent or marginal. Furthermore, our results suggests that there is
either no or very limited interaction with genetic predisposition to adiposity.
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